

Electron Transport Chain (Oxidative Phosphorylation)

Five Complexes:

- Complex 1: removes two electrons from NADH and releases a proton; passes electron to CoQ10. Needs magnesium.
 - ***If electrons leak out of the ETC, it's usually from here, if too much fuel compared to demand or insufficient CoQ10
- Complex 2: FADH₂ enters either from succinate in the TCA or from fatty acids; also donates electrons to CoQ10 (so CoQ10 is reduced from ubiquinone to ubiquinol)
- Complex 3: contains cytochrome c; gets electrons from CoQ10 (converting it back to ubiquinone)
 - ***second most common place where electrons escape from the ETC, if ATP isn't being used up fast enough

Anaerobic Respiration

 Glycolysis: glucose —>(10 steps)—> pyruvate

- Or: glycogen —> glucose-6phosphate—>—> pyruvate
- Pyruvate —> lactate (cofactor: NADH, or Vit B3)
- Lactate: low pH—> feedback that more energy is needed, causes burning pain

- Pharmaceuticals (just to name a few!)
- H2 blockers: cimetidine, ranitidine
- Statins (inhibits CoQ10 synthesis)
- Beta blockers: deplete CoQ10
- Amiodarone: inhibit beta oxidation, the ETC
- psychotropic medications: antidepressants, benzodiazepines, antipsychotics, lithium
- Valproic acid: depletes L-carnitine —> less beta oxidation
- Tylenol (depletes antioxidants, esp glutathione)
- ASA: sequesters CoA
- ABx: tetracyclines (inhibit beta oxidation), fluoroquinolones

Mitochondria and Chronic Disease: Autism

"Substantial percentages of autistic patients display peripheral markers of mitochondrial energy metabolism dysfunction, such as (a) elevated lactate, pyruvate, and alanine levels in blood, urine and/or cerebrospinal fluid, (b) serum carnitine deficiency, and/or (c) enhanced oxidative stress."

Palmieri L, Persico AM. Mitochondrial dysfunction in autism spectrum disorders: cause or effect?. Biochim Biophys Acta. 2010;1797(6-7):1130-1137. doi:10.1016/j.bbabio.2010.04.018

Mitochondria and Chronic Disease: Alzheimer's

- Glutamate hypersensitivity—> mitochondria produce too much ATP —> free radicals leak into cytosol —> mitochondrial damage
- Atrophy due to apoptosis of neurons (secondary to oxidative damage to mitochondria) —> dementia
- "the link between mitochondrial dysfunction and autophagy in Alzheimer's disease is also discussed. As a result of insufficient digestion of oxidatively damaged macromolecules and organelles by autophagy, neurons progressively accumulate lipofuscin that could exacerbate neuronal dysfunction."

Paula I. Moreira, Cristina Carvalho, Xiongwei Zhu, Mark A. Smith, George Perry, Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Volume 1802, Issue 1, 2010, Pages 2-10

Mitochondria and Chronic Disease: Infertility

- Oocytes have >100K mitochondria per cell
- Age-related infertility: decrease in mitochondrial function, and particularly CoQ10
 - Xu Y, Nisenblat V, Lu C, et al. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in lowprognoids young women with decreased ovarian reserve: a randomized conciled train. *Report Biol Endocrinol.* 2010;E(1):29, Published 2018 Mar 27, doi:10.1186/s13958-018-034-3
- Lower cellular energy —> miscarriage or errors in cell division (such as in Downs Syndrome) or other birth defects

Image by <u>RitaE</u> from <u>Pixabay</u>

- 1930, Otto Warburg: found higher aerobic glycolysis, gluconeogenesis, and lactic acid production in tumor cells, and reduced fatty acid oxidation dt impaired TCA cycle and oxidative phosphorylation: **i.e. mitochondrial damage**
- Takes 8-10 mutations in a normal cell before it becomes malignant (Some of these can be inherited, so it takes fewer mutations for those people: i.e. cancer predisposition)
- Mitochondria usu trigger apoptosis with cellular damage. But certain mutations prevent this.

Księżakowska-Łakoma K, Żyła M, Wilczyński JR. Mitochondrial dysfunction in cancer. Prz Menopauzalny. 2014;13(2):136-144. doi:10.5114/pm.2014.42717

Optimizing Mitochondrial Function: L-Carnitine

- Found in: meat, dairy, fish, poultry; synthesized from lysine and methionine (and also requiring iron, Vit C, B6, and B3).
- Remember: 38 ATP from glucose, 129 from fatty acids.
 Without carnitine: no fatty acids can enter the mitochondria
- Clears lactic acid buildup: restores pyruvate
- Therapeutic range: 500-2000 mg/d

Optimizing Mitochondrial Function: Lipid Replacement Therapy

"Lipid Replacement Therapy (LRT) administered as a nutritional supplement with antioxidants can prevent oxidative membrane damage, and LRT can be used to restore mitochondrial and other cellular membrane functions via delivery of undamaged replacement lipids to cellular organelles."

Garth L. Nicolson, PhD. Lipid Replacement as an Adjunct to Therapy for Chronic Fatigue, Anti-Aging and Restoration of Mitochondrial Function. *Journal of the American Nutraceutical Association*. Vol. 6 No. 3, 2003, 22-28

- "Important lipids that require constant replacement are phospholipids, glycophospholipids and other lipids that make up cellular and organelle membranes, especially mitochondrial membranes."
 - Garth L. Nicolson, PhD. Lipid Replacement as an Adjunct to Therapy for Chronic Fatigue, Anti-Aging and Restoration of Mitochondrial Function. *Journal of the American Nutraceutical Association*. Vol. 6 No. 3, 2003, 22-28
 - Lipid dosing: EPA 1000-3000 mg, phosphatidylcholine 9 grams

Optimizing Mitochondrial Function: Riboflavin (B2)

- Found in: molasses, green leafies, almonds, whole milk, meats, whole grains
- Needed to make FADH₂ from the TCA for Complex 2.
- Therapeutic dose: 25-100 mg/d

Optimizing Mitochondrial Function: Biotin (B7)

- Found in: egg yolk, organ meats, milk, barley, brewer's yeast, royal jelly
- "Biotin (B7) is the coenzyme of decarboxylases required for gluconeogenesis and fatty acid oxidation."
 - Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. *Chem Biol Interact*. 2006;163(1-2):94-112. doi:10.1016/j.cbi.2006.04.014
- Therapeutic dose: 10-30 mg/d

Optimizing Mitochondrial Function: Folate (B9)

- » Found in: green leafies, berries, citrus fruits, legumes, salmon, eggs, dairy
- B6, folate, and B12: contribute to the methylation cycle, responsible for forming 80% of the body's phosphatidylcholine, necessary for lipid replacement
- Necessary for "initiation of mitochondrial protein synthesis"

E. Wesselink, W.A.C. Koekkoek, S. Grefte, R.F. Witkamp, A.R.H. van Zanten, Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence, Clinical Nutrition, Volume 38, Issue 3, 2019, Pages 982-995.

- » Necessary for synthesis of purines
- Therapeutic dose: 400 mcg-20 mg/d
- Side note: folate, 5-MTHF, folate, folinic acid; NOT folic acid

Optimizing Mitochondrial Function: Cobalamin (B12)

- Found in: trout, liver, beef, eggs, salmon
- B6, folate, and B12: contribute to the methylation cycle, responsible for forming 80% of the body's phosphatidylcholine, necessary for lipid replacement
- Methylation —> SAMe—> formation of creatine
- Daily dose: 500-5000 mcg/d of methylcobalamin, adenosylcobalamin, or hydroxycobalamin (NOT cyanocobalamin: toxic to Complex 4)

Optimizing Mitochondrial Function: Vitamin C

- Found in: citrus fruits, broccoli, bell peppers
- "Involved in the biosynthesis of carnitine, the key factor in betaoxidation"
 - E. Wesselink, W.A.C. Koekkoek, S. Grefte, R.F. Witkamp, A.R.H. van Zanten, Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clinical Nutrition, Volume 38, Issue 3, 2019, Pages 982-995
- Therapeutic dose: 500-8000 mg/d (buffered if you get that high!)

49

Optimizing Mitochondrial Function: Caffeine

"Increases cAMP resulting in increased effectiveness of complexes I and IV... caffeine may stimulate <u>oxidative</u> <u>phosphorylation</u>."

E. Wesselink, W.A.C. Koekkoek, S. Grefte, R.F. Witkamp, A.R.H. van Zanten, Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence, Clinical Nutrition, Volume 38, Issue 3, 2019, Pages 982-995

Optimizing Mitochondrial Function: PQQ

- Diet sources: cocoa powder (far and away the highest!), kiwis, green peppers, and parsley
- Involved in mitochondrial biogenesis
- Protects against chemical toxicity in the mitochondria
- Antioxidant
- Dose: 10-20 mg

Supplements	Daily Recommended Intake (DRI)	Patient's Daily Recommendations	Provider Daily Recommendations	
Antioxidants				
Vitamin A / Carotenoids	1,000 IU	1,000 IU		
Vitamin C	15 mg	50 mg		
Vitamin E / Tocopherols	9 IU	25 IU		
B-Vitamins		-		
Thiamin - B1	0.5 mg	1 mg		
Riboflavin - B2	0.5 mg	5 mg		
Niacin - B3	6 mg	20 mg		
Pyridoxine - B6	0.5 mg	(1 mg		
Biotin - B7	8 mcg	50 mcg		
Folic Acid - B9	150 mcg	300 mcg		
Cobalamin - B12	0.9 mcg	50 mcg		
Minerals				
Magnesium	80 mg	200 mg		
Manganese	1.2 mg	1 mg		
Molybdenum	17 mcg	25 mcg		
Zinc	3 mg	5 mg		
Digestive Support				
Probiotics		10 B CFU		
Pancreatic Enzymes		5,000 IU		

SUGGESTED SUPPLEMENT SCHEDULE

	nd Dysbiosis Ma	rkers	Neurotrans	mitter Metabolites	5
Malabsorption Marke	rs Refe	rence Range	Reference Rang		
Indoleacedic Acid (JAA)	(4)	<= 4.2	Vanimandalis: Actal	(1)	1.5-6.0
Phenylecelic Acie (PAA)		<= 0.15	Homenaeniliic Acid	(4	18-8.6
Bacterial Dysbiosis M	Aarkers		S-OH-instalment in Acid	(24.2)	64-34.3
Dhydnosyphwryfprojatnic Add (DrifPPA)	18	a) == 12.3	3-Methol-4-CH-phenological	0.13	0.07-0.41
3-Hydroxyphenylacetic Acid	58	= 9.2	Kenuneris Acat	(87)	= 9.2
4-Hydroxyghenylacette Acid	(1)	ea 37	Querelinic Acid	(42)	c= 11.8
Benzoic Acit	0.10	«= 0.10	Koncentra (Concentrate Region	2.0	>> >= 0.46
Hippure Acit	340	«= 921			
reast / Fungal Dyst	biosis Markers		Vitai	min Markers	
Automas	(150		a Methodology Acut	(19)	ence Kan
Citramalic Acid	(2.6)	c= 5.3	- Kanada (a		-ca 0.45
Terteric Acid	(5)	20	- Automation Auto		== 0.91
Collular Enormy & M	litochondrial Ma	tabolitos		5	a 23
Carbohydrate Metabo	olism Refe	rence Range	S AND - D AND		
			PERFECTION PLATER AND		
Lastic Acid	(10.8)	3.7-14.6	(FIGH)	0.5	
Lactic Acid	(21)	3.7-14.6	(PIGN) Glatair: Acit	0.97	<= 1.8 <= 0.92
Lactic Acid Pyronic Acid p-CH-Busyn: Acid (BHBA)	(13) (21) (14)	3.7-14.6 12-39 == 3.4	distance Acid Glutanic Acid Isovalarylgyctras	097	<= 1.8 <= 0.92 <= 5.4
Lette Acid Pyrom Acid p-CH-Butym Acid (BHBA) Energy Metabolism	(1) (2) (4)	3.7-14.6 12-30 == 3.4	Glutetr Acit Glutetr Acit Isovelarylglothe Methylexates Acit	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ci 1.8 ci 0.92 ci 54 ci 2.2
Latte Asis Pyrum Asis p-Dri-Burym Asis Energy Metabolism Chin Asis		3.7-14.6 12-39 == 3.4 62-648	Oktatic Acid Oktatic Acid Isovaiarylgiptite Methomakinii: Acid Rasthueenic Acid	(13) (13) (13) (13) (13)	 42 1.8 42 0.92 42 5.4 42 2.2 42 1.07
Lastis Acid Prynomic Acid D-CH-Bunyos, Acid (BHBA) Energy Metabolism Calos: Acid Cal-Acardia Acid		3.7-14.6 12-39 == 3.4 62-648 0) 13-33	PTONS Obstant: Acid Insonitarygigatine Martydroxlonii: Acid Xasthuremic: Acid 3-Hydroxygosgateric: Acid		42 1.8 42 0.92 42 5.4 42 2.2 42 1.07 6-23
Lastiz Asis Pyrum: Asis p-Crt-Burym: Asis (BHBA) Energy Metabolism Chin: Asis Chin: Asis Con-America Asis becitiv: Asis	(1.0) (2) (1.4) (20) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	3.7-14.6 12-39 == 3.4 62-648 0) 13-33 38-97	PTGbg Glateke Acid Leovakerylgijstine Methylenakoss: Acid Sachtannic Acid 3-Hydroxynapanor, Acid 3-Hydroxynapanor, Acid		 41.8 40.92 5.4 2.2 6.23 6.23
Lastiz Asis Pyrum: Asis Pyrum: Asis p-Crt-Burym: Asis (BHBA) Energy Metabolism Chin: Asis Chin: Asis Incritit:	(10) (2) (14) (10) (10)	3.7-14.6 12-39 == 3.4 02-648 0) 13-33 36-97 0) 12-66	PEDag Scheme Acar Catalete Acar Investment Acar Anterpresentation Acar Striptomyongatoric Acar Striptomyongatoric Acar Toxxin & Dott	10 10 10 27 49 13 15 15 15 15 15 15 15 15 15 15	 4 1.8 4 0.92 5.4 4 2.2 4 1.07 6-23 5 3
Lette Acid Prycon Acid Prycon Acid Proces Acid Proces Acid Proces Proceedings		17-146 12-30 	Aribia Citatele Acie Investerylightim Methylmakimi: Acid Shrydonygengeneric Acid Shrydonygengeneric Acid Toxin & Dott	and a second sec	 = 1.8 = 0.92 = 5.4 = 2.2 = 1.07 6-23 = 38 same Range
Lastin And Physics Asis Cot-Banyus Asis (BHBA) Energy Metabolism Con Asis Con Con Asis Con Con Asis Con		37-14.6 12-39 == 3.4 02-848 0) 13-33 38-47 0) 12-66 0.8-10.4	1900 - Son	and a second sec	 = 1.8 = 0.92 = 5.4 = 2.2 = 1.07 6-23 = 38 = 0.50
Latte Acid Ppron Acid (1998) (1994) (3.7-14.6 12-39 == 3.4 02-648) 13-33 36-97 0) 12-66 0.8-10.4 == 2.7	Vicini, uponin nui Octava Ant Nanolari yigina Mahaman Ant Anthuran Ant Shiphongana Ant Shiphongana Ant Costin & Dott	and a second sec	← 1.8 ← 0.92 ← 5.4 ← 2.2 ← 1.07 6-23 ← 38 S eence Ran ← 0.90 ← 8.7
Lastic Acid Payson Acid Chin Acid Chin Acid Chin Acid Payson Acid Natic Acid Scotter Acid Natic Acid Payson Pays		37-14.6 12.39 == 3.4 02.448) 13.33 38-97 0 12.46 0.8-10.4 == 2.7 == 19	yrian Ochres Aar Neurolwyfyria Metylwalani, Aar Aetharan, Aar Srigelangragan, Aar Srigelangragan, Aar Toxin 8, Dott Cores Aar Mannes, Aar	an an an an an an an an an an an an an a	 ⇒ 1.8 ⇒ 0.92 ⇒ 5.4 ⇒ 2.2 ⇒ 1.07 \$ 23 ⇒ 3.8 ⇒ 0.50 ⇒ 5.7 0.38.0.91
Leate Ard Pyrom Ard Schlagen, Ard Cele Ard Carl, Ard Backet, Ard Backet, Ard Backet, Ard Main: Ard Copy, Ard Backet, Ard Backet, Ard Backet, Ard Backet, Ard Backet, Ard		37-14.6 12-39 == 3.4 02-448 0) 13-33 38-97 0) 12-45 0.8-10.4 == 2.7 == 19 == 5.6	oficial global man Catasa Ant University protein Matajanaam Ant Antajanaam Ant Antajanaam Ant Sington procession Ant Control Ant Antajanaam Antajana Sington procession Ant Control Ant Onto Ant	an and a second	 ⇒ 1.8 ⇒ 0.92 ⇒ 5.4 ⇒ 2.2 ⇒ 1.07 5.23 ⇒ 3.8 ⇒ 0.50 ⇒ 5.7 0.36.0.97 22.44
Latits Add Dynam And (Bitha) Schrädbagen And (Bitha) Schrädbagen And Charl And Schrädbagen And		37-14.6 12-30 	aritika uponin kan Distrik Adri Distrik Adri Martipikakan Adri Antheran Adri Dirgan yangangan yangangan yangangan Dirgan yangangan yangangangan Dirgan yangangan yangangangan Dirgan yangangan yangangangan Dirgan yangangan yangangangan Dirgan yangangan yangangan Dirgan yangangan yangangan Dirgan yangangan yangangan yangan Dirgan yangangan yangangan Dirgan yangangan yangan yangan Dirgan yangan yangan yangan yangan Dirgan yangan yangan yangan yangan yangan yangan Dirgan yangan yangan yangan yangan yangan Dirgan yangan yangan yangan yangan yangan yangan Dirgan yangan yangan yangan yangan yangan yangan yangan yangan Dirgan yangan yangan yangan yangan yangan yangan yangan yangan Dirgan yangan yanga	an a	 a 1.8 a 0.92 a 5.4 a 2.2 a 1.07 6-23 a 38 a 38 a 0.50 a 5.7 0.38.0 91 22.64
Laata Aaf Tynon Aaf Energy Metabolism Con Auto Charlong Aaf (Metabolism Charlong Aaf Antonic Aaf		3.7:44.6 12-39 = 3.4 02-648) 13-33 36-97 0) 12-65 0.8:10.4 = 2.7 = 19 = 5.0 = 4.2	gride, griderit na Granter Ant Handarskyppinn Hardparater Ant Singhampater Ant Singhampater Ant Toxin 2. Dock Singhampater Ant Singhampater An	ar and a second an	 a 18 a 0.92 a 5.4 a 2.2 a 1.07 6.23 a 38 a 38 a constraints a 0.50 a 8.7 0.38.0.91 22.64
Later Ard Argune Ard 2 07-bayen Aras (1986a) 2 07-bayen Aras (1986a) Concept Metabolism Concept Metabolism Concept Aras Concept Aras Argung A	(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	27:146 12.39 	الاستاد الله المعالم المعالم المعالم المعالم المع مالية معالم المعالم المع معالم المعالم الم معال	er er er er er er er er er er	 a 1.8 a 0.02 a 5.4 a 2.2 a 1.07 b -33 a 38 c 38 c 38 c 30 a 8.7 o 38.0 91 o 22.64 ence Rang a 33

va Diagnostics, Inc. Unless otherwise noted with +, the assay

The performance characteristics of all assays have been verified by Ge has not been cleared by the U.S. Food and Drug Administration.

References			
Know, Lee. Mitochondria ar	nd the Future of Medicine: the Key to Understanding Disease, Chronic Illness, Aging, and Life Itself. Chelsea Green Publishing, 2018.		
LYNCH, BEN. DIRTY GE?	NES: a Breakthrough Program to Treat the Root Cause of Illness and Optimize Your Health. HARPERCOLLINS, 2020.		
Hwang P, Willoughby DS. M	Mechanisms Behind Pyrroloquinoline Quinone Supplementation on Skeletal Muscle Mitochondrial Biogenesis: Possible Synergistic Effects with Exercise		
[published online ahead of p	rint, 2018 May 1]. J Am Coll Nutr. 2018;1-11. doi:10.1080/07315724.2018.1461146		
Palmieri L, Persico AM. M	Intochondrial dysfunction in autism spectrum disorders: cause or effect?. Biochim Biophys Acta. 2010;1797(6-7):1130-1137. doi:10.1016/j.bbabio.2010.04.018		
Hargreaves IP. Coenzyme	Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol. 2014;49:105-111. doi:10.1016/j.biocel.2014.01.020		
Parikh S, Saneto R, Falk M	U, et al. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 2009;11(6):414-430. doi:10.1007/s11940-009-0046-0		
Frantz, MC. and Wipf, P.	(2010), Mitochondria as a target in treatment. Environ. Mol. Mutagen., 51: 462-475. doi:10.1002/em.20554		
Kalghatgi S, Spina CS, Cos	stello JC, et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci Transl Med. 2013;5(192):192ra85.		
doi:10.1126/scitranslmed.3	006055		
Sharma S, Black SM. CARNI	TINE HOMEOSTASIS, MITOCHONDRIAL FUNCTION, AND CARDIOVASCULAR DISEASE. Drug Discov Today Dis Mech. 2009;6(1-4):e31-e39.		
doi:10.1016/j.ddmec.2009.02.	001		
Garth L. Nicolson, PhD. Li	ipid Replacement as an Adjunct to Therapy for Chronic Fatigue, Anti-Aging and Restoration of Mitochondrial Function. Journal of the American Nutraceutic		

