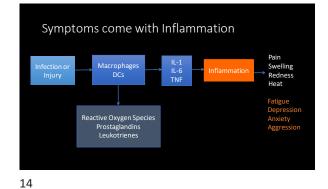
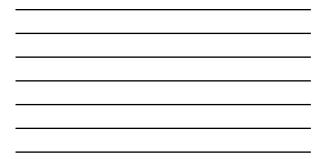
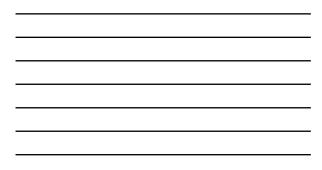
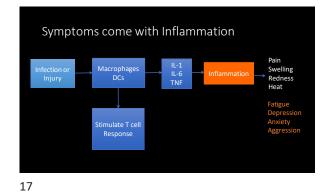


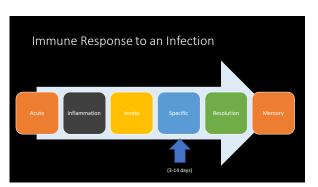
Pattern Recognition Receptors

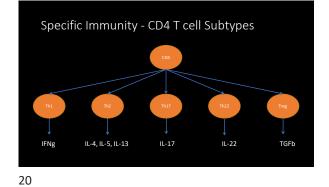






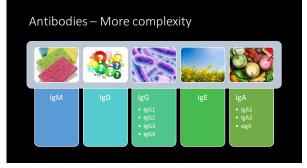






Types of Immune Responses (not comprehensive)

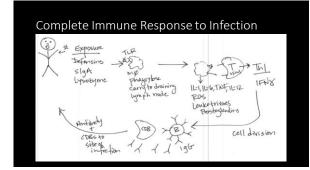
Reactions to:	T Cell Response
Bacteria and Virus	Th1
Worms (some parasites)	Th2
	Th17 Th22
Food	Treg/Th3

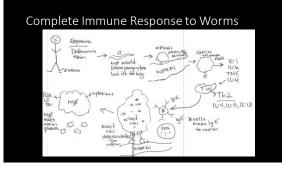

Antibody Function

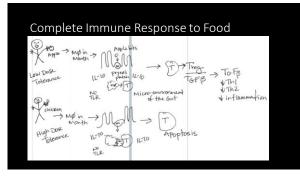
- Opsinization
 Coat
- Neutralization Block a function
- Fc Receptor mediated endocytosis Increase uptake
- Antibody Dependent Cellular Cytotoxicity

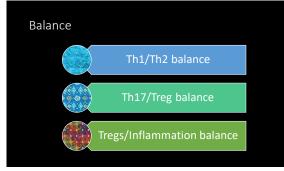
 Tag for destruction

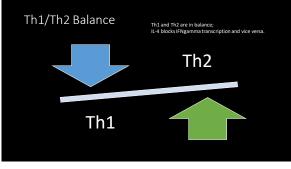
22

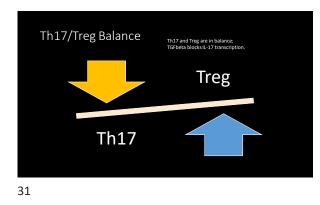


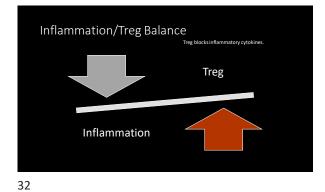

23

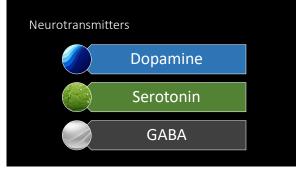

A notibe object			
Antibodies			
Reaction to:	T cell	Cytokine	Antibody
Bacteria and Virus	Th1	IFNgamma	lgG2, lgG3
Worms/Allergens	Th2	IL-4, IL-5, IL-13	lgE, lgG1, lgA2 (mucus)
Food	Th3/Treg	TGFbeta	lgA2, lgG4
Mold/ Autoimmunity	Th17	IL-17	lgG2, lgG3

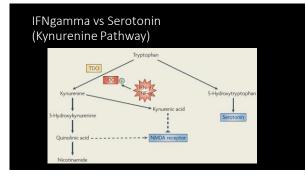


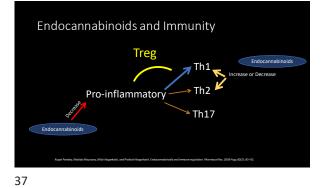


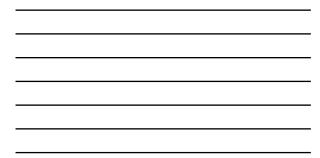


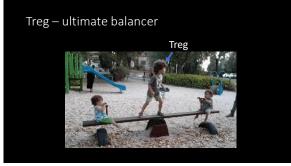


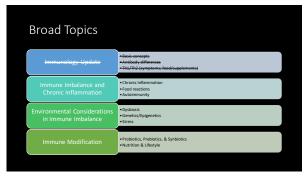




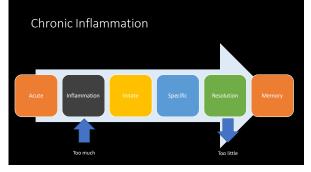


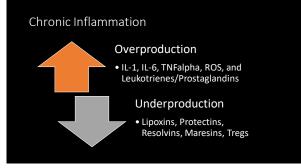

Cell	Express Receptors (not exhaustive)
CD4 T cell (Th1, Th2, Th17, Treg)	β adrenergic receptor Dopamine receptor Acetykholine receptor SHT receptor (serotonin) Opiold receptor
CD8 T cell (Kills infected cells)	Dopamine receptor 5HT receptor (serotonin)
B cell (Pathology and predictive)	Dopamine receptor
NK cell (Kills virally infected cells and cancer)	Dopamine receptor Opioid receptor
Macrophage IL-1, IL-6, and TNF	Dopamine receptor α and β adrenergic receptor
Dendritic cell IL-1, IL-6, and TNF	Doparnine receptor Opioid receptor

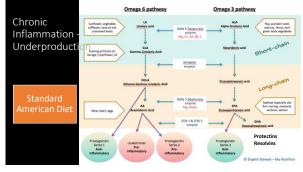

-



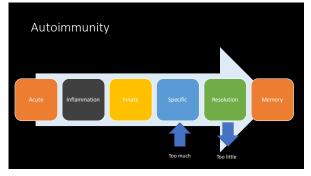
Neuro- transmitter	Mood Effect	Gut Effect	Immuno Effect
Dopamine	Pleasure/Depression	Colon contraction	Can contribute to Th1, Th2, Th17 or Treg (misregulated in MS, Lupus, and IBD)
Serotonin	Happy/Anxiety	Bowel movements	Competes for Tryptophan with IFNgamma – Th1
GABA	Relaxation/ Depression/Mania	Intestinal motility; Pain reduction	Anti-inflammatory



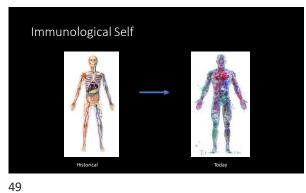


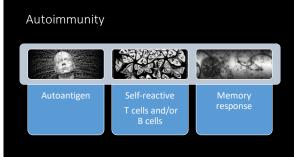

Immune Imbalance and Chronic Inflammation

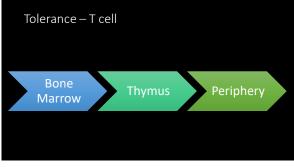
Chronic Inflammation - Overproduction			
Food hypersensitivity	Inflammatory foods	Obesity	Stress/ Anxiety
Periodontitis	Unresolved injury	Undiagnosed infection	Not sleeping
3			

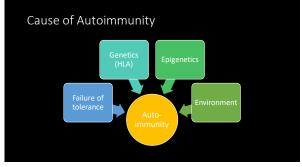


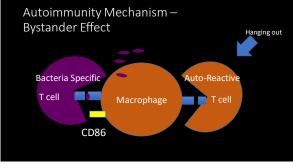
44

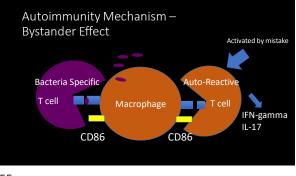

Chronic Inflammation – Low Tregs













Autoimmunity – Autoantibodies

Preclinical

• Antibodies show up before disease starts

Clinical

• Antibodies part of pathology

Development of autoantibodies precedes clinical manifestations of autoimmune diseases. Journal of Autoimmunity 83 (2017) 9

Autoimmunity - Autoantibodies

Disease	When Auto-Ab Appear Prior to Disease
Primary Biliary Cholangitis	0.9 – 19 years
Rheumatoid Arthritis	0.1 – 13.8 years
Systemic Lupus Erythmatosus	0.88 – 3. 68 years for ANA 1.1 – 8.1 years for Anti-dsDNA
Type 1 Diabetes	1.7 – 6 years

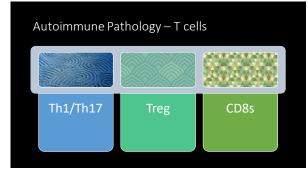
58

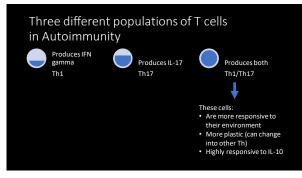
Autoimmunity - Autoantibodies

Disease	When Auto-Ab Appear Prior to Disease
Autoimmune Thyroid Disease (Graves and Hashimoto's)	Up to 7 years
Multiple Sclerosis	1 – 3 years
Celiac	Not reported
IBD (Crohn's and UC)	About 4.5 years
Development of autoantibodies precedes clinical manifestations of a	

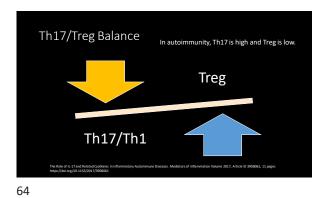
59

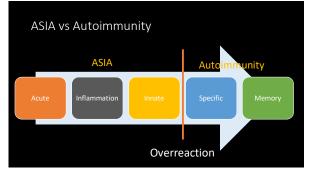
Example – Rheumatoid Arthritis

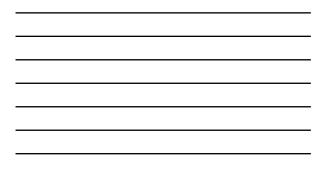

Rheumatoid Factor - RF
 People can have RA and not have RF
 Elderly people can have RF and not


ACPA

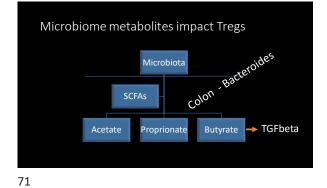
- Specificity of 95% if ACPA is present, RA is likely
 Found in 75% of people with RA
 Correlate with more aggressive disease

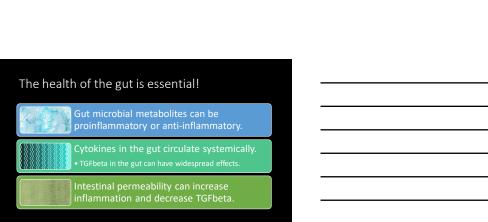


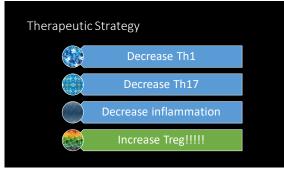


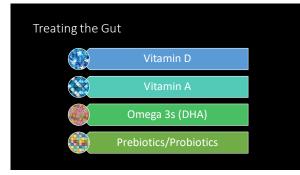


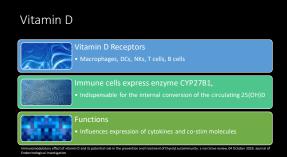
Tregs – where are they? (...preview of what's to come...)

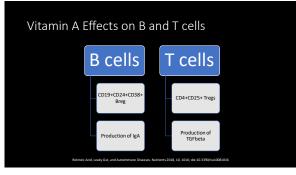


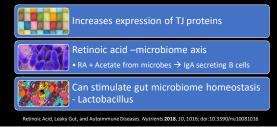

Broad Topics				
+Basic concepts +Antibody differences +Tht/Th2-lymptomic food/supplements)				
+Chronic Inflormation +Food reactions +Autoimmunity				
• Dysbiosis • Genetics/Epigenetics • Stress				
• Probiotics, Prebiotics, & Synbiotics • Nutrition & Lifestyle				

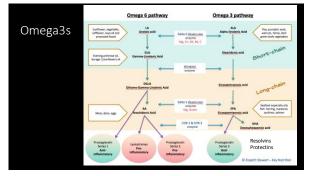





	Microbiome influencers					
	Vaginal or C- section	Breastfed	Type of Diet (meat or veg)	Pets (Type and number)	Siblings	City or rural
	Culture	Geographical location	Genetic variability	Antibiotic use	Non-antibiotic pharmaceutical use	Exposure to chemicals
	Hormones (time of month)	Health Status	Age	Preservatives in food	Stress level	Exercise
70						




Vitamin D in Autoimmunity

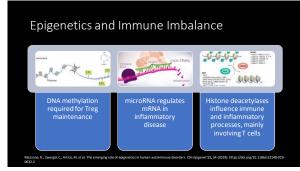


Vitamin A, Intestinal Permeability, and Autoimmunity

79

80

Genetics and Epigenetics


Genetics

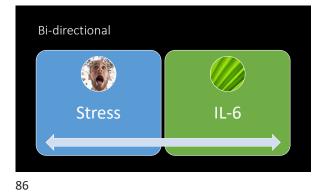
• Differences in the DNA sequence that affect different proteins (SNPs – single nucleotide polymorphisms)

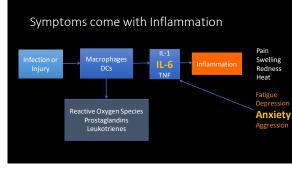
Epigenetics

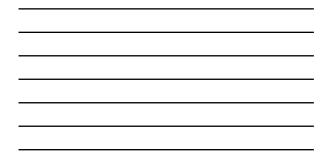
• Differences in how the gene is expressed – when it is turned on, turned off, and how much protein is made

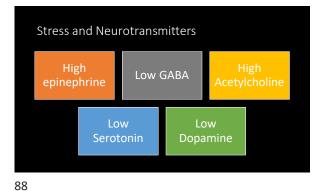
83

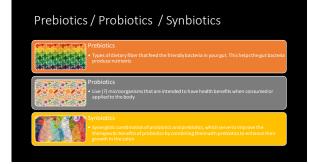
Stress and Chronic Inflammation

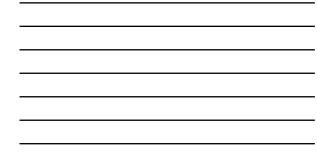

OMG!

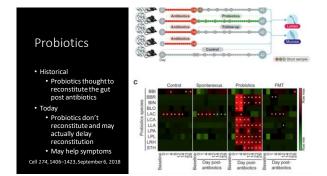

What is STRESS?

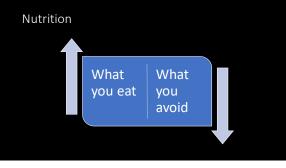

A particular relationship between the person and the environment that is appraised by the person as taxing or exceeding his or her resources and endangering his or her well-being... (Lazarus and Folkman)

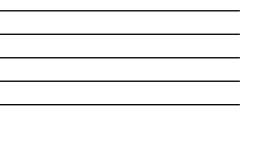




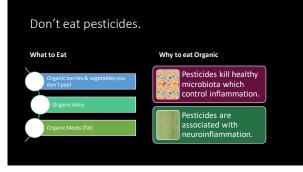

Cell	Express Receptors (not exhaustive)
CD4 T cell (Th1, Th2, Th17, Treg)	β adrenergic receptor Dopamine receptor Acetytcholine receptor 5HT receptor (Serotonin)
CD8 T cell (Kills infected cells)	Dopamine receptor 5HT receptor (Serotonin)
B cell (Pathology and predictive)	Dopamine receptor
NK cell (Kills virally infected cells and cancer)	Dopamine receptor
Macrophage IL-1, IL-6, and TNF	Dopamine receptor α and β adrenergic receptor
Dendritic cell IL-1, IL-6, and TNF	Dopamine receptor

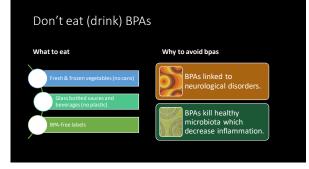

Broad Topics	
Immunology Update	+Basic concepts +Antibody differences +Thi-/Thi-Leymptoms; lood/cupplements)
Immune Imbalance and Chronic Inflammation	-Chronic inflammation +Food reactions +Autoimmunity
Environmental-Considerations in Immune Imbalance	- Dysbinis Xeenstic: (Epiganetic: +Stress
Immune Modification	• Probiotics, Prebiotics, & Synbiotics • Nutrition & Lifestyle

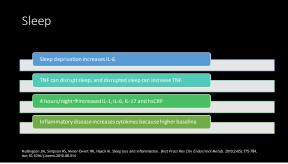


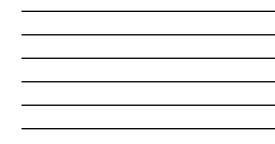


							PMID
Lactobacillus plantarum DR7	Stressed adults	1×10 ^e cfu/day for 12 weeks	Placebo	Alleviated stress and anxiety	↓ IFN-γ& TGF-α, ↑ IL-10	J Th1 Anti- inflammatory	30882244
Lactobacillus plantarum IS-10506	Children w/ atopic dermatitis	10 ¹⁰ cfu/2xday for 12 weeks	Placebo	Improved atopic dermatitis	↓ IFN-γ. IL-4 & IL- 17	1 Th1, Th2 & Th17	29022387
Lactobacillus plantarum 299v	Men w/ stable coronary artery disease	20 billion CFU/day	None	Improved vascular endothelial function	↓ IL-8& IL-12	↓ Th1 Anti- inflammatory	30355158
Bilidobacterium animalis	Healthy adults	Probiotic- containing yogurt (unknown dose) for 28 days + 5 non- brushing days	Placebo	Improved gingival health (after refraining from oral hygiene)	↓ IL-1β	Anti- inflammatory	28753102
Billdobacterium lactis HN019	Adults with metabolic syndrome	80 mL fermented milk with 2.72 × 10 ¹⁰ cfu/day for 45 days	Placebo	Improved lipid profile and reduced inflammation	↓TNF-a& IL-6	↓ Th1 Anti- inflammatory	27126957



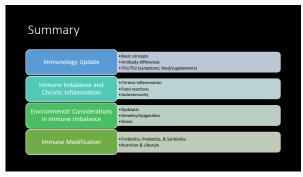


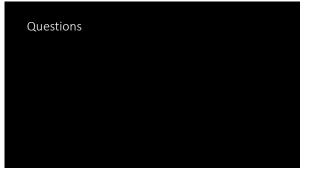




Don't eat artificial sweeteners.

What to eat	Why to avoid sweeteners
Honey	Spiking blood glucose increases inflammation.
Maple Syrup Stevia	Artificial sweeteners kill microbiota.
106	




Sleep and the NLRP3 Inflammasome

Summary Acute Inflammation Innate Specific Resolution Memory

Summary Nutrition can impact every aspect of the immune response. Image: Constraint of the immune response. Image: Constresponse. I

